

# **GAR-T**eam

## La gestione del paziente che non risponde

### **Umberto Vitolo**

Ematologia Ospedaliera A.O.U. Città della Salute e della Scienza di Torino





### **1.** Introduction

### 2. Relapsed/refractory patients after CAR-T cells: Possible treatments

- Bispecific antibodies
- Checkpoint inhibitors
- Radiotherapy
- Bispecific CAR-T
- New biological treatments for R/R DLBCL possibly with low hematological toxicity
- Role of allogeneic transplantation



# Introduction

### Issues for salvage treatment

- 60% of DLBCL patients failed CAR-T cell treatment
- Some of them have rapidly progressive disease and no time for salvage treatment
- 20–30% of the patients experienced prolonged cytopenia
- Hypogammaglobulinemia and increased infectious risk
- Few options available
- Few studies and some case reports
- Need of early recognition of poor outcome

### 61 patients with DLBCL, PMBCL, HGBCL



- 46 (75%) received subsequent therapies
- Initial therapies included: Second CAR-T of same construct (14), novel/targeted therapy (14), chemotherapy +/- rituximab (7), radiotherapy (5), PD1inhibitors (4), intrathecal chemotherapy (1), and allogeneic HSCT (1)
- At time of progression, 16% (N=10) and 26% (N=16) of patients in our population were noted to have grade ≥3 neutropenia and thrombocytopenia
- 9 patients alive and in remission for ≥12 months after progression. Last line of therapy included radiotherapy (2), allogeneic HSCT (2), ibrutinib (2), subsequent CD19- specific CAR-T (1), nivolumab (1), and lenalidomide (1)

DLBCL: diffuse large B-cell lymphoma; PMBCL: primary mediastinal B-cell lymphoma; HGBCL: high-grade B-cell lymphoma; OS: overall survival: HSCT: hematopoietic stem cell transplantation PD: progression disease

# **CAR-Team** Early and late hematologic toxicity following CD19 CAR-T cells



ANC: absolute neutrophil count; PLT: platelet; PRBC: packed red blood cell

Mod. da Fried S, et al. Bone Marrow Transplantation 2019; 54: 1643–1650

Potential mechanisms of CAR-T failure

# CO x20

### **CD19 epitope loss** Loss of CD19 epitope

Loss of CD19 epitope by uncertain mechanisms in lymphoma

#### Host or tumor factors

Upregulation of negative regulatory receptors on CAR-T cells or ligands on tumor or microenvironment; high tumor burden and inadequate target to effector ratio.

### T cell specific factors

Inadequate central memory and/or stem central memory CAR-T cells; pre-manufacture T cell dysfunction due to disease or prior therapy; inadequate cytokine profile; paucity of CD4 CAR-T cells; insufficient CAR-T cell expansion or persistence. Potential treatment strategies

Alternative CAR-T cells

CAR-T cells against alternative targets; allogeneic transplantation for patients able to achieve post relapse remission

#### Checkpoint inhibitors

Checkpoint blockade, immuno modulation with ImiDs, ITKi, or other agents; additional CD19 CAR-T cell therapy

#### Immunomodulation

Immunomodulation with IMIDs ITKi, or other off the shelf CAR-T cell strategies.

of CAR T-cell treatment failure and potential treatment strategies

Proposed/known mechanisms

Standard chimeric antigen receptor treatment



B-cell lymphoma CAR-T cell







# Relapsed/refractory patients after CAR-T cells: Possible treatments



Bispecific antibodies

**CAR-Team** Bispecific antibodies



CD3

CD20

Tumor cell

**CD20 x CD3** 

### Mosunetuzumab (RG7828; BTCT4465A)

- Full-length, fully humanized IgG1 bispecific antibody<sup>1</sup>
- Redirects T cells to engage and eliminate B cells; T-cell activation, cytokine elevation and increase in TILs observed (*Hernandez et al. ASH 2019 P-1585*)
- No ex-vivo T cell manipulation required ('off-the-shelf' and no delay in treatment)

### GO29781

- Phase I/Ib dose-escalation and expansion study in heavily pre-treated R/R B-cell NHL
- Cycle 1 step-up dosing: Mitigates CRS, allowing dose escalation to maximize therapeutic potential<sup>2,3</sup>

# Are reported data for 270 R/R B-cell NHL patients, including 30 patients with prior CAR-T

Registry number: NCT02500407

CRS: cytokine release syndrome; NHL: non-Hodgkin lymphoma; R/R: relapsed/refractory; TILs: tumor-infiltrating lymphocytes



Mod. da Schuster SJ, et al. Blood 2019; 134 (Suppl\_1): 6 1. Sun LL, et al. Sci Transl Med 2015; 7: 287ra70; 2. Budde LE, et al. Blood 2018; 132 (Suppl\_1): 399; 3 Bartlett NL, et al. J Clin Oncol 2019; 37 (Suppl\_15): 7518

| n (%)                                              | N=2 | 70*      |
|----------------------------------------------------|-----|----------|
| Median age, years (range)                          | 62  | (19–96)  |
| Male                                               | 172 | (63.7%)  |
| ECOG PS 1 at baseline                              | 164 | (61.2%)† |
| Aggressive NHL                                     | 180 | (66.7%)  |
| DLBCL                                              | 117 | (43.3%)  |
| trFL                                               | 32  | (11.9%)  |
| MCL                                                | 23  | (8.5%)   |
| Other                                              | 8   | (3.0%)   |
| Indolent NHL                                       | 85  | (31.5%)  |
| FL                                                 | 82  | (30.4%)  |
| Other                                              | 3   | (1.1%)   |
| Median prior systemic therapies, n (range)         | 3   | (1–14)†  |
| Prior CAR-T therapy                                | 30  | (11.1%)  |
| Prior autologous SCT                               | 77  | (28.5%)  |
| Refractory <sup>‡</sup> to last prior therapy      | 194 | (71.9%)  |
| Refractory <sup>‡</sup> to prior anti-CD20 therapy | 233 | (86.3%)  |

CCOD (clinical cut-off date): Aug 9, 2019

\*safety evaluable patients; †n=268, as two patients did not have data entered by CCOD; ‡no response

(PR or CR) or PD within ≤6 months of treatment

trFL: transformed follicular lymphoma; MCL: mantle cell lymphoma; SCT: stem cell transplantation

### **30 patients with prior CAR-T therapy**

- 17 DLBCL, 8 trFL, 5 FL
- Median 5 lines of prior systemic therapies (range 3–14)
- 29 patients (96.7%) refractory to prior anti-CD20 therapy
- 25 patients (83.3%) refractory to last prior therapy
- 22 patients (73.3%) refractory to prior CAR-T therapy

|                       | Safety evaluable<br>N=270 | Prior CAR-T<br>N=30 |  |
|-----------------------|---------------------------|---------------------|--|
| CRS (Lee et al. 2014) | 29%                       | 27%                 |  |
| Grade 1/2             | 28%                       | 23%                 |  |
| Grade 3               | 1%                        | 3%                  |  |
| NT                    | 44%                       | 43%                 |  |
| Grade 1/2             | 40%                       | 33%                 |  |
| Grade 3               | 4%                        | 10%                 |  |
| Potential ICANS       | 1%                        | 0%                  |  |

- 95% of AEs occurred in cycle 1; no cumulative or chronic toxicity
- Neutropenia was responsive to GCSF; rate of febrile neutropenia was low (3%)
- CRS onset was a median of 4 days (range 1–43) after dosing and lasted a median of 2 days (range 1–59)
- 97% of CRS events resolved by the cutoff date; tocilizumab was used in 3% of cases
- No CRS during retreatment
- The most common NAEs were headache (16%), insomnia (9%), and dizziness (9%)
- ICANS-like AEs included 2 confusion (1 related) and 1 lethargy (related); all resolved within 3 days

NT: neurotoxicity; NAEs: neurological adverse events; ICANS: immune effector cell-associated neurotoxicity syndrome; GCSF: granulocyte colony-stimulating factor

### Efficacy

|                 | N* | ORR, n (%) | CR, n (%) |
|-----------------|----|------------|-----------|
| All histologies | 18 | 7 (38.9%)  | 4 (22.2%) |
| • DLBCL         | 9  | 2 (22.2%)  | 2 (22.2%) |
| • trFL          | 5  | 1 (20.0%)  | 0 (0.0%)  |
| • FL            | 4  | 4 (100%)   | 2 (50.0%) |

## Day-12 (baseline)



# After cycle 3 of mosunetuzumab



### 380 copies/µg DNA

• 8 months in CR off treatment

### Case

- 58-year old patient with R/R FL
- 8 prior lines of systemic treatment
  - Refractory to prior anti-CD20 and alkylating agents
  - Relapsed after CD19-CAR-T therapy
  - Progressed on checkpoint inhibitor and no response to PI3K inhibitor

### **Exploratory biomarkers**

- Expansion of lymphocytes (including residual CAR-T cells in 2/8 tested patients)
- CR to mosunetuzumab observed with or without CAR-T expansion

\*efficacy-evaluable patients: patients who were enrolled for at least 3 months, or had response data available at any time, or discontinued treatment for any cause CCOD: Aug 9, 2019

#### Mod. da Schuster SJ, et al. Blood 2019; 134 (Suppl\_1): 6



### Escalating dose of subcutaneous epcoritamab in R/R B-cell NHL: High rate of complete response and favorable safety profile



Epcoritamab (DuoBody<sup>®</sup>-CD3xCD20) is a subcutaneously administered bispecific antibody that induces T cell-mediated killing of CD20-expressing tumors

- Induces T cell activation by binding to CD3 on T cells and CD20 on malignant B cells
- Promotes immunological synapse between bound cells, resulting in apoptosis of B cells
- Binds to a distinct epitope on CD20, different from the epitopes of rituximab and obinutuzumab

### **Response by histology**

| Pagnanga                      | <b>DLBCL</b><br>(n=46) |                    | <b>FL</b><br>(n=12) |                | MCL    |  |
|-------------------------------|------------------------|--------------------|---------------------|----------------|--------|--|
| Response                      | 12–60 mg<br>(n=23)     | 48–60 mg<br>(n=12) | 0.76–48<br>(n=11)   | 12–48<br>(n=5) | (n=4)  |  |
| Evaluable<br>patients, n      | 22                     | 11                 | 10                  | 5              | 4      |  |
| ORR, n (%)                    | 15 (68)                | 10 (91)            | 9 (90)              | 4 (80)         | 2 (50) |  |
| CR                            | 10 (46)                | 6 (55)             | 5 (50)              | 3 (60)         | 1 (25) |  |
| PR                            | 5 (23)                 | 4 (36)             | 4 (40)              | 1 (20)         | 1 (25) |  |
| Stable<br>disease, n (%)      | 1 (5)                  | 0                  | 0                   | 0              | 1 (25) |  |
| Progressive<br>disease, n (%) | 5 (23)                 | 0                  | 1 (10)              | 1 (20)         | 0      |  |



Checkpoint inhibitors

# **CAR-Team** Possible mechanisms of resistance to CAR-T



## **CAR-Team** Relapse after CAR-T infusion: Pembrolizumab

35-year old man with multiple refractory PMBCL with multiple extranodal involvement treated with CAR-T19 cells, progressed at day +26. He received pembrolizumab, 2 mg/kg, on day 26 after CAR-T19 cell infusion and then every 3 weeks. PET at day 186 PMR



|         | Day 14 | Duy 20 | Day 45 |
|---------|--------|--------|--------|
| Clone 1 | 6.10%  | 6.10%  | 13.11% |
| Clone 2 | 2.35%  | 2.90%  | 6.45%  |
| Clone 3 | 0.00%  | 0.27%  | 3.57%  |
| Clone 4 | 0.40%  | 0.40%  | 2.15%  |
| Clone 5 | 0.12%  | 0.27%  | 1.49%  |
| Clone 6 | 0.00%  | 0.04%  | 1.46%  |
| Clone 7 | 0.57%  | 0.91%  | 1.31%  |
| Clone 8 | 0.07%  | 0.32%  | 1.23%  |
| Clone 9 | 1.08%  | 0.81%  | 0.99%  |

Day 26

Day 14

Day 45





- 46 years old with DLBCL PDL1+ refractory to 3 lines of therapy
- Treated in Zuma-1 trial with rapid progression after CAR-T cell infusion
- On day 11 he received nivolumab 3 mg/kg with grade 3 CRS
- Rapid tumor regression after 1 cycle of nivolumab associated with rapid re-expansion of CAR-T cells

# **CAR-Team** CAR-T cell therapy + pembrolizumab

- Single phase 2 trial for R/R B-cell NHL after treatment with CAR-T19
- 12 patients (11 DLBCL, 1 FL).
- Median PFS after CAR-T: 2.2 months
- Pembrolizumab fixed dose 200 mg every 3 weeks
- CRS 1 patient
- Few side effects: Neutropenia, fatigue, pleural effusion
- ORR 27% (1 CR, 2 PR, 1 SD, 7 PD)
- 9/12 showed a re-expansion peak in peripheral blood CAR-T19 cells
- Maximum CAR transgene copy number did not correlate with response, but responding had more than one re-espansion peak

Different pattern of resistance after CAR-T cell treatment. CD19 loss and PDL-1 upregulation





— 2.3 — Radiotherapy



Early experience using salvage radiotherapy for relapsed/refractory non-Hodgkin lymphomas after CD19 chimeric antigen receptor (CAR)-T cell therapy: 14 patients at MSKCC

|    | CAR-T<br>product | Best post<br>CAR-T<br>response | Indication for SRT                  | Irradiated site                | SRT<br>Dose<br>(Gy) | SRT<br>fract. |            |                                                                              |
|----|------------------|--------------------------------|-------------------------------------|--------------------------------|---------------------|---------------|------------|------------------------------------------------------------------------------|
| 14 | CAR 19-28z       | CR                             | Focal relapse. follicular histology | Upper mediastinum              | 46                  | 23            |            |                                                                              |
| 13 | CAR 19-28z       | CR                             | Bridge to alloSCT                   | Chest wall                     | 36                  | 18            | •          | <b>♦</b> • • •                                                               |
| 12 | JCAR017          | PR                             | Focal relapse, chemorefractory      | Mesentery                      | 30                  | 20            | • *        |                                                                              |
| 11 | JCAR017          | PR                             | Bridge to alloSCT                   | Mediastinum, manubrium         | 45                  | 26            | ■ ◆ →      | Disease extent a CAR-T infusion                                              |
| 10 | Tisa-cel         | PD                             | Bridge to alloSCT                   | Mesentery                      | 45                  | 30            | ● ◆ →      |                                                                              |
| 9  | Tisa-cel         | CR                             | Focal relapse, palliation           | Thoracic paraspinal            | 20                  | 5             | • •        | Advanced                                                                     |
| 8  | JCAR017          | PR                             | Augment CAR response                | Mesentery/perinephrin          | 20                  | 5             |            | Radiotherapy                                                                 |
| 7  | Tisa-cel         | CR                             | Palliation of neuro symptoms        | WBRT                           | 30                  | 10            |            | Allogeneic transplant                                                        |
| 6  | JCAR017          | PR                             | Palliation airway compromise        | Larynx                         | 30                  | 10            | *          | Additional CAR-T infusion                                                    |
| 5  | Armored          | CR                             | Palliation                          | Gluteal soft tissue            | 20                  | 5             | *          | Disease milestones                                                           |
| 4  | JCAR017          | PR                             | Dominant site of progression        | Mesentery                      | 36                  | 20            |            | <ul> <li>Post CAR-1 relapse (RD1)</li> <li>Complete response (CR)</li> </ul> |
| 3  | Axi-cel          | PD                             | Palliation of cord compression      | Thoracolumbar spine            | 20                  | 5             | <b>◆</b> ∗ | Partial response (PR)     Bragrassiva disease (PD2)                          |
| 2  | JCAR017          | PD                             | Palliation airway compromise        | Bilateral neck                 | 20                  | 10            | •          | <ul> <li>Ongoing response</li> </ul>                                         |
| 1  | JCAR017          | PR                             | Palliation                          | Thigh cutaneous/soft<br>tissue | 30                  | 15            | <b>*</b>   | * Death                                                                      |
|    |                  |                                |                                     |                                |                     |               | 0 12       | 24 36 48 60 72                                                               |

**Discussion points** 

- Post CAR-T failure: 79% relapsed/progressed in previous PET-avid sites. Need for RT consolidation to high risk lesions sites after/before CAR-T?
- Preclinically, low-dose RT conditioning can sensitize antigen-negative tumour cells to CAR-T-mediated elimination by activated CAR-T secretion of TRAIL cytokines.
- RT-CAR-T synergy may be via abscopal effects producing enhanced tumour-specific immunity against irradiated and distant sites











# Bispecific CAR-T





Mod. da Grupp SA, et al. N Engl J Med 2014; 371: 1507–1517; Sotillo E, et al. Cancer Discov 2015; 5: 1282–1295; Jacoby E, et al. Nat Commun 2016; 7: 12320

# **CAR-Team** Bispecific anti-CD20, anti-CD19 CAR-T

| Baseline characteristics                                                    | n=22 (%)         |
|-----------------------------------------------------------------------------|------------------|
| Age at infusion in years, median (range)                                    | 57 (38–72)       |
| Male sex                                                                    | 19 (86 %)        |
| Race                                                                        |                  |
| European ancestry                                                           | 19 (86%)         |
| Other                                                                       | 3 (14%)          |
| Histology                                                                   |                  |
| DLBCL                                                                       | 11 (50%)         |
| Richter's transformation                                                    | 2 (9%)           |
| MYC rearrangement                                                           | 5 (23%)          |
| MCL                                                                         | 7 (32%)          |
| CLL                                                                         | 3 (14%)          |
| FL                                                                          | 1 (4%)           |
| Baseline LDH, median (range)                                                | 229 (121–2074)   |
| Refractory to last line of treatment                                        | 18 (82%)         |
| Lines of prior therapy, median (range)                                      | 4 (2–12)         |
| History of prior autologous HCT                                             | 8 (37%)          |
| History of prior allogeneic HCT                                             | 3 (14%)          |
| History of prior anti-CD19 CAR-T cell therapy                               | 1 (5%)           |
| Prior BTK inhibitor treatment (patients with MCL or CLL only;               | 10 (100%)        |
| n=10)                                                                       | 10 (10070)       |
| Dose (max body weight of 80 kg)                                             |                  |
| 2.5 x 10 <sup>5</sup> cells per kg                                          | 3 (14%)          |
| 7.5 x 10 <sup>5</sup> cells per kg                                          | 3 (14%)          |
| 2.5 x 10 <sup>6</sup> cells per kg                                          | 16 (73%)         |
| Non-cryopreserved infusion                                                  | 15 (68%)         |
| Split infusion (30% on day 0, 70% on day 1)                                 | 16 (73%)         |
| Clinical outcomes at day 28                                                 | 40 (000()        |
| Day 28: ORR, all dose levels (n=22)                                         | 18 (82%)         |
|                                                                             | 14 (04%)         |
| PK<br>Dev 29 ODD, deep of 2 5v106 cells per kg (n. 16)                      | 4 (18%)          |
| Day 20 OKK, dose of 2.5x10° cells per kg (II=10)                            | 14 (00%)         |
|                                                                             | 12 (75%)         |
| FR                                                                          | 2 (13%)          |
| Day 28 ORR, dose of 2.5x10 <sup>6</sup> cells per kg, fresh infusion (n=12) | 12 (100%)        |
| CR                                                                          | 11 (92%)         |
| PR                                                                          | 1 (8%)           |
| DLBCL day 28 ORR (n=11)                                                     | 10 (91%)         |
| CR                                                                          | 7 (64%)          |
| PR                                                                          | 3 (27%)          |
| MCL day 28 ORR (n=7)                                                        | 4 (57%)          |
| CR                                                                          | 4 (57%)          |
| PR                                                                          | 0                |
| CLL day 28 ORR (n=3)                                                        | 3 (100%)         |
| CR                                                                          | 2 (66%)          |
| PR                                                                          | 1 (33%)          |
| FL day 28 ORR (n=1)                                                         | 1 (100%)         |
| CR                                                                          | 1 (100%)         |
| Median IgG at day 28 (mg/mL)                                                | 4.72 (0.99–7.71) |
| Received IVIG for hypogammaglobulinemia post-CAR infusion                   | 15 (68%)         |







CD3 CAR+ T cells for PD patients  $4 \times 10^{6}$ 3 × 10<sup>6</sup> 2 × 10<sup>6</sup> 1 × 10<sup>6</sup> Patient #3
 Patient #5 Patient #15 5 × 10<sup>5</sup> Patient #25 4 × 10<sup>5</sup> 3 × 10<sup>5</sup> 2 × 10<sup>5</sup> 1 × 10 Day post-infusion

SUBJECT 01: Pre/post CAR-T cell PET/CT

- 1st CAR-T

- 2nd CAR-T

60 -

40

cell Fold To





Day 8 - T cell exp. Day 14 - T cell exp. Percent of CAR+ T cells



These data suggest that dual targeting of CD19 and CD20 is a promising combination to overcome antigen loss in **B** cell NHL and CLL



# 2.5 New biological treatments for R/R DLBCL possibly with low hematological toxicity

# **CAR-Team** L-MIND: A multicentre, prospective single-arm, phase II study

### MOR208 Fc-enhanced, anti-CD19 mAb

- ADCC 1
- ADCP 1
- Direct cell death
- Encouraging single agent activity in NHL patients with long DoR in R/R DLBCL



### Lenalidomide

- T and NK cell activation/expansion
- Direct cell death
- Demonstrated activity as an anti-lymphoma agent, alone or in combination
- Approved for treatment of MCL and FL/MZL

Potentiation of activity by combining tafasitamab and LEN in vivo and in vitro

Mod. Da Salles G, et al. Lancet Oncol 2020; 21: 978–988

Horton HM, et al. Cancer Res 2008; Awan FT, et al. Blood 2010; Richter J, et al. Blood 2013; MorphoSys data on file; Wu L, et al. Clin Cancer Res 2008; Lapalombella R, et al. Blood 2008; Zhang L H, et al. Br J 2013, Wiernik PH, et al. J Clin Oncol 2008; Witzig TE, et al. Ann Oncol 2011; Czuczman MS, et al. Clin Cancer Res 2017; Jurczak W, et al. Ann Oncol 2018

## **CAR-Team** Tafasatinib + lenalidomide in 80 patients with R/R DLBCL



Mod. da Salles G, et al. Lancet Oncol 2020; 21: 978–988

### Phase 2 randomized study in 80 transplant ineligible R/R DLBCL patients: BR ± Pola

#### ADVERSE EVENTS IN PATIENTS TREATED WITH POLA-BR COMPARED WITH BR

|                                      | Pola-BR (n=39)                                       |                     | BR (                 | n=39)               |  |  |  |
|--------------------------------------|------------------------------------------------------|---------------------|----------------------|---------------------|--|--|--|
| Adverse event                        | All grades,<br>N (%)                                 | Grade 3–4,<br>N (%) | All grades,<br>N (%) | Grade 3–4,<br>N (%) |  |  |  |
| Blood and lymphatic system disorders |                                                      |                     |                      |                     |  |  |  |
| Anemia                               | 21 (53.8)                                            | 11 (28.2)           | 10 (25.6)            | 7 (17.9)            |  |  |  |
| Neutropenia                          | 21 (53.8)                                            | 18 (46.2)           | 15 (38.5)            | 13 (33.3)           |  |  |  |
| Thrombocytopenia                     | 19 (48.7)                                            | 16 (41.0)           | 11 (28.2)            | 9 (23.1)            |  |  |  |
| Lymphopenia                          | 5 (12.8)                                             | 5 (12.8)            | 0                    | 0                   |  |  |  |
| Febrile<br>neutropenia               | 4 (10.3)                                             | 4 (10.3)            | 5 (12.8)             | 5 (12.8)            |  |  |  |
| GI disorders                         |                                                      |                     |                      |                     |  |  |  |
| Diarrhea                             | 15 (38.5)                                            | 1 (2.6)             | 11 (28.2)            | 1 (2.6)             |  |  |  |
| Nausea                               | 12 (30.8)                                            | 0                   | 16 (41.0)            | 0                   |  |  |  |
| Constipation                         | 7 (17.9)                                             | 0                   | 8 (20.5)             | 1 (2.6)             |  |  |  |
| General disorders an                 | General disorders and administration site conditions |                     |                      |                     |  |  |  |
| Fatigue                              | 14 (35.9)                                            | 1 (2.6)             | 14 (35.9)            | 1 (2.6)             |  |  |  |
| Pyrexia                              | 13 (33.3)                                            | 1 (2.6)             | 9 (23.1)             | 0                   |  |  |  |
| Metabolism and nutrition disorders   |                                                      |                     |                      |                     |  |  |  |
| Decreased<br>appetite                | 10 (25.6)                                            | 1 (2.6)             | 8 (20.5)             | 0                   |  |  |  |
| Peripheral neuropathy                |                                                      |                     |                      |                     |  |  |  |
| Peripheral<br>neuropathy             | 17 (43.6)                                            | 0                   | 3 (7.7)              | 0                   |  |  |  |







# **2.6**Role of allogeneic transplantation



- Innovative strategies for patients who fail CAR-T include: Kinase inhibitors, polatuzumab, bispecific antibodies, checkpoint inhibitors
- All these agents provide short-lived response
- Investigating allo-HCT consolidation for sensitive post-CAR-T relapse is worthwhile
- However, in a real-word study only 5/61 patients underwent allo-HCT post CAR-T failure