

Basi biologiche delle tossicità da CAR-T

Matteo G Carrabba

CAR Team Clinical Leader 05/2021

CAR-Team Chimeric antigen receptors

Key advantages

- Independency from MHC restriction
- Targeting of proteins, sugars, lipids
- Multiple effector mechanisms
- Living drugs (expansion, memory)

Natural T cells require costimulation to fully activate

Cancer	Site	n	CAR	CR (%)	Reference
B-ALL	NCI	21	28z	60	Lee, Lancet 2015
B-ALL	MSKCC	53	28z	67	Park, NEJM 2018
B-ALL	FHCC	30	BBz	93	Turtle, JCI 2016
B-ALL	Multiple ELIANA	75	BBz	81	Maude, NEJM 2018
NHL	Multiple ZUMA-1	101	28z	54	Neelapu, NEJM 2018
NHL	Multiple JULIET	93	BBz	40	Schuster, NEJM 2019
NHL	FHCC	32	BBz	33	Turtle, STM 2016
CLL	UPenn	14	BBz	29	Porter, STM 2015
CLL	FHCC	24	BBz	17	Turtle, JCO 2017

	Axi-cel	Tisa-cel	Liso-cel	Brexu-cel
Institution	NCI/MDACC	UPenn	SCH/FHCRC	MDACC
Sponsor	Kite-Gilead	Novartis	Juno-BMS	Kite-Gilead
Trial	ZUMA-1	JULIET	TRANSCEND	ZUMA-2
FDA approval	2017 (Yescarta [®])	2018 (Kymriah®)	2021 (Breyanzi®)	2020 (Tecartus®)
Tumor	DLBCL, t-FL, PMBCL	DLBCL, t-FL	DLBCL, t-FL	MCL
CAR design	CD28-CD3z	41BB-CD3z	41BB-CD3z	CD28-CD3z
Reference	Locke, Lancet 2019	Schuster, NEJM 2019	Abramson, Lancet 2020	Wang, NEJM 2020

Strong interaction between academia and industries

On-target off-tumor toxicity

- Damage of healthy tissues expressing the target antigen
- Quite relevant: tumor-specific antigens are rare
- Severity depends on how vital, accessible and widespread the targeted tissue is (CD19 → B-cell aplasia → Immunoglobulin Replacement Therapy)
- Particularly dangerous for solid tumors

Cytokine release syndrome

Cancer	Site	CAR	Severe CRS (%)	Reference
B-ALL	NCI	28z	29	Lee, Lancet 2015
B-ALL	MSKCC	28z	26	Park, NEJM 2018
B-ALL	FHCC	BBz	23	Turtle, JCI 2016
B-ALL	Multiple ELIANA	BBz	47	Maude, NEJM 2018
NHL	Multiple ZUMA-1	28z	13	Neelapu, NEJM 2018
NHL	Multiple JULIET	BBz	22	Schuster, NEJM 2019
NHL	FHCC	BBz	13	Turtle, STM 2016
CLL	UPenn	BBz	43	Porter, STM 2015
CLL	FHCC	BBz	8	Turtle, JCO 2017

Systemic inflammatory reaction

- Rapid onset within a few days after CAR-T cell infusion
- Fever, hypotension, hypoxia, capillary leak, coagulopathy
- Potentially life-threatening
- Severe CRS associated with:
 - Higher tumor burden
 - Higher T-cell dose
 - Cy/Flu lymphodepletion
 - \rightarrow More robust CAR-T cell expansion in vivo

- Laboratory markers of inflammation and organ failure
 - Including C-reactive protein (CRP) and ferritin
- Inflammatory cytokines
 - Including IL-6, IL-8, IFN- γ , MCP1, MIP1 α , GM-CSF
- Laboratory markers of coagulopathy
- Markers on endothelial activation
 - Including VWF, increased angiopoietin-2/angiopoitin-1 ratio

- Initiated by CAR-T cells activation upon antigen engagement
- Which other cellular compartments are involved?

→ Development of animal models recapitulating CRS development

medicine

ARTICLES https://doi.org/10.1038/s41591-018-0036-4

Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells

Margherita Norelli^{1,2}, Barbara Camisa¹, Giulia Barbiera³, Laura Falcone¹, Ayurzana Purevdorj¹, Marco Genua³, Francesca Sanvito⁴, Maurilio Ponzoni⁴, Claudio Doglioni^{®4}, Patrizia Cristofori⁵, Catia Traversari⁶, Claudio Bordignon^{2,6}, Fabio Ciceri^{2,7}, Renato Ostuni³, Chiara Bonini^{2,8}, Monica Casucci¹ and Attilio Bondanza^{1,2*}

medicine

CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade

LETTERS

https://doi.org/10.1038/s41591-018-0041-7

Theodoros Giavridis^{®1}, Sjoukje J. C. van der Stegen^{®1}, Justin Eyquem¹, Mohamad Hamieh¹, Alessandra Piersigilli² and Michel Sadelain^{1*}

Efficacy and CAR-related toxicities

CAR-Team Role of monocytes in CRS

CAR-Team IL-1 precedes IL-6 release

CAR-T cells release **perforin** to form pores, leading to the entry of **granzyme B** into target tumor cells, which causes the subsequent activation of **GSDME** and **pyroptosis** (programmed necrotic cell death)

Proptosis supernatants contain **ATP** and **HMGB1** that induce macrophages to release **IL-1b** and **IL-6**, respectively

Liu YL, et al. Science Immunol 2020; 5: eaax7969

Neurotoxicity

Cancer	Site	CAR	Severe NTX (%)	Reference
B-ALL	NCI	28z	5	Lee, Lancet 2015
B-ALL	MSKCC	28z	42	Park, NEJM 2018
B-ALL	FHCC	BBz	50	Turtle, JCI 2016
B-ALL	Multiple ELIANA	BBz	13	Maude, NEJM 2018
NHL	Multiple ZUMA-1	28z	28	Neelapu, NEJM 2018
NHL	Multiple JULIET	BBz	12	Schuster, NEJM 2019
NHL	FHCC	BBz	28	Turtle, STM 2016
CLL	UPenn	BBz	7	Porter, STM 2015
CLL	FHCC	BBz	25	Turtle, JCO 2017

- Characterized by aphasia, delirium, headache, seizures and edema
- Potentially life-threatening (cerebral hemorrhage and edema)
- Characterized by endothelial activation
- Characterized by increased permeability of the BBB
- Typically occurs after CRS
- Severe neurotoxicity is frequently associated with:
 - Earlier and more severe **CRS** (fever and cytokines)
 - Higher tumor burden
 - Cy/Flu lymphodepletion
 - More robust CAR-T cell expansion in vivo
 - Higher CAR T-cell dose
 - Neurologic comorbidities

Tocilizumab

- Anti-IL-6R antibody
- Active against CRS
- Unable to control neurotoxicity in most of patients

Corticosteroids

- At high-doses can be detrimental for efficacy

The search for strategies to mitigate these toxicities is extremely active

1. Early intervention in patients at risk of developing severe toxicities

• Identification of predictive biomarkers

2. Cytokine inhibitors

• IL-6, IL-1, GM-CSF, catecholamine

1. Early intervention in patients at risk of developing severe toxicities

- Identification of predictive biomarkers
- **2.** Cytokine inhibitors
 - IL-6, IL-1, GM-CSF, catecholamine

3. On/off switches

• Pharmacological control over CAR T-cell activity (drugs or CAR designs)

Short treatment with dasatinib can rapidly and temporary switch-off **CAR T-cell function**

CAR constructs able to induce full T-cell activation only upon administration of a dimerizing agent

CAR constructs including a domain that enable drugdependent degradation of the CAR protein

